Bluetooth технические требования, практическая реализация

       

Экономичные режимы работы устройств Bluetooth


Точки доступа, основанные на технологии Bluetooth, дадут возможность новым по­колениям мобильных устройств передавать большие объемы голосовой информа­ции и данных. Как правило голосовые приложения Bluetooth работают от малога­баритных батарейных источников питания. В тоже время системы передачи дан­ных могут работать от сетевых источников. В первом случае экономичный режим работы наиболее актуален. Эффективным способом экономии мощности является уменьшение времени, в течение которого активен приемопередатчик Bluetooth. Технические требования Bluetooth Baseband предусматривают три основных спо­соба работы в экономичном режиме [27]:

1. Если у подчиненного устройства нет надобности участвовать в пикосети, но оно все еще должно быть синхронизировано, оно может быть переведено в режим «ПАРКОВКА» (Park). Этот режим подходит для подчиненных устройств, которые время от времени нуждаются в связи с мастером. Устройства, находящиеся в этом


Экономичные режимы работы устройств Bluetooth
Экономичные режимы работы устройств Bluetooth
режиме, могут запросить выход из режима Park у мастера, путем передачи перио­дического сигнала маяка (beacon), передаваемого мастером. Интервалы между сиг­налами маяками могут составлять несколько секунд.

2.     Режим «ВНИМАНИЕ» (Sniff) подходит для устройств, которым нужно свя­
зываться с мастером периодически с заранее заданной частотой. В этом режиме нет
гарантии того, что устройства будут обслужены при каждом периодическом требо­
вании. Режим Sniff позволяет экономить потребление батареи за счет уменьшения
трафика запросов. Sniff-интервалы могут продолжаться до нескольких секунд.

3.     Режим «ПАУЗА» (Hold) целесообразен в том случае, когда устройство может
иногда приостанавливать трафик вызова. Устройство может войти в режим Hold
на заранее определенный промежуток времени для обработки другой задачи, на­
пример для участия в работе другой пикосети, когда в течение определенного пери­
ода времени ничего не надо передавать, естественно экономя при этом энергию.


Кроме того, в случае если мастер общается с известными (обнаруженными ра­нее) устройствами, то при организации связи можно пропустить процедуру запро­са. Если при этом подчиненное устройство находится в режиме «ожидания вызо­ва» (Page Scan), то время ожидания вызова будет составлять всего несколько де­сятков млсек. Это особенно важно, если мастер-устройство работает от батареи, а подчиненное устройство, постоянно находящееся в режиме ожидания вызова, пи­тается от сети. В этом случае энергопотребление устройства будет снижено.

Для того чтобы выбрать правильный экономичный baseband-режим, проекти­ровщику аппаратуры необходимо учитывать пропускную способность, время отве­та (или время ожидания) и требования к потребляемой мощности каждого кон­кретного приложения. Чем дольше устройство остается бездействующим, тем большее энергосбережение. Одним из ограничивающих факторов, который опреде­ляет, как часто устройству нужно выходить на связь, является условие синхрони­зации часов между мастером и подчиненными устройствами, принимающими учас­тие в пикосети. Технические требования Bluetooth требуют, чтобы устройство, ра­ботающее в нормальном режиме в пределах пикосети (в этом режиме к нему можно обратиться в любое время) работало с часами, обеспечивающими стабильность 20 ррщ. Чтобы поддерживать синхронизацию пикосети, мастер должен обеспечивать сообщения о синхронизации по крайней мере каждые 225 млсек. Это определяет максимальный период между включениями в нормальном режиме.

Использование энергосберегающих режимов работы позволяет не только умень­шить потребляемую мощность устройств Bluetooth, но и увеличить надежность пи­косети путем уменьшения интерференции от других беспроводных устройств. Каждая пикосеть Bluetooth использует 79 частотных каналов. Конфликты между разными пикосетями или между пикосетями Bluetooth и другими беспроводными устройствами, работающими в одной области частот, будут уменьшены, за счет то­го, что устройства Bluetooth большую часть времени пассивны, т.е.


при использо­ вании энергосберегающих режимов. Таким образом, в этом случае экономятся два наиболее важных ресурса — полоса частот и энергия источника питания.

Дополнительную информацию о режимах работы устройств Bluetooth можно найти в таблице 2.1.17 раздела 2.

3.10. Электромагнитная совместимость сетей Bluetooth и других технологий

Сети Bluetooth и сети стандарта 802.1 lb работают в общей полосе частот, шириной 83.5МГЦ (2.41Гц - 2.4835ГГц).

Из-за того, что 802.11b и Bluetooth по разному используют частотный спектр, они могут создавать друг другу значительную интерференцию [28]. В 802.1 lb при­меняется технология расширения спектра с помощью прямой последовательности, а технология Bluetooth использует метод расширения спектра с помощью скачко­образной перестройки частоты.

Устройство 802.1 lb занимает в течение текущей передачи данных только четвер­тую часть отведенной полосы. После того как передача закончена, полоса свободна для других устройств в сети, а также для других пользователей. Другими словами, 802.1 lb использует канал на основе множественного доступа с временным разделе­нием. 802.11b определяет 11 доступных каналов с центральными частотами, разне­сенными на 5МГц. Эти каналы частично накладываются друг на друга (рис. 3.28).

Для избежания интерференции между расположенными рядом сетями 801.1 lb, отдельные локальные сети обычно работают на каналах 1, 6 и 11. Таким образом, три сети 802.11b, расположенные рядом, не будут перекрываться по частоте и не будут создавать друг другу интерференции [28].

В отличие от сетей стандарты 802.1 lb, частота канала Bluetooth не зафиксирова­на, т.к. используется скачкообразная перестройка частоты. Как говорилось ранее, устройства Bluetooth меняют частоту по закону псевдослучайной последователь­ности, используя 79 каналов, шириной 1 МГц каждый (рис.3.29). Таким образом, устройство Bluetooth занимает всю полосу, но в определенный момент времени -только малую ее часть. Скачкообразная перестройка частоты происходит 1600 раз в секунду.



Обычно устройства 802.11b либо включены в настольный или портативный ком­пьютер, либо работают как точки доступа к проводной базовой сети Ethernet и Web. Устройства 802.11b имеют уровни мощности передачи порядка 100 мВт. При этом уровне мощности 802.11b может поддерживать скорость передачи данных 11Мбит/сек на расстояния до 100 метров.

В отличие от 802.11b, Bluetooth является персональной сетью и предназначен для беспроводной связи на малых расстояниях.

Bluetooth поддерживает меньшую скорость передачи данных (1 Мбит/сек), уро­вень передаваемой мощности равен 1 мВт. В тоже время, у Bluetooth есть опция с увеличением мощности передачи до 100 мВт. Эта опция может использоваться в приложениях, где требуется дальность действия до 100 метров.

Эти типы устройств определены в радио спецификации Bluetooth как «устрой­ства класса 1».

Экономичные режимы работы устройств Bluetooth
Экономичные режимы работы устройств Bluetooth
Экономичные режимы работы устройств Bluetooth
Экономичные режимы работы устройств Bluetooth
Экономичные режимы работы устройств Bluetooth


Рис. 3.28. Распределение частотных каналов во времени для устройств стандарта 802.11b

Совместное использование спектра устройствами 802.1 lb и Bluetooth показыва­ет, что две технологии могут создавать друг другу помехи, в зависимости от их вза­имного расположения. Учитывая, что Bluetooth PAN занимают весь ISM диапазон, сигналы двух или более Bluetooth PAN, находящиеся в непосредственной близости друг от друга, будут иногда перекрываться, что может привести к потере пакетов данных.

Экономичные режимы работы устройств Bluetooth



РиС. 3.29. Распределение частотных каналов во времени для устройств Bluetooth


Для уменьшения возможных проблем с электромагнитной совместимостью при работе в ISM диапазоне, предлагается несколько алгоритмов адаптации [4, 29, 30].

управление мощностью передачи

Этот метод заключается в регулировке мощности передающих устройств, работаю­щих в ISM диапазоне. Например, если устройство Bluetooth может определить ми­нимальный уровень мощности, который необходим для передачи пакетов с прием­лемым для приема коэффициентом ошибочных битов (BER), то это позволит уменьшить мощность передатчика. Превышение этого минимального уровня мощ­ности только увеличивает вероятность создания помех другим устройствам, рабо­тающим в этой области, в том числе и устройствам Bluetooth, 802.1 lb и беспровод­ным телефонам.



Стандарт Bluetooth предусматривает низкий уровень чувствительности прием­ника (-70 дБм). Большинство производителей фактически достигают лучшего уровня чувствительности (-80 дБм). Наиболее чувствительные приемники позво­лят снизить уровень передаваемой мощности, не уменьшая требуемого отношения сигнал/шум. Это улучшит характеристики совместимости системы, т.к. устройства будут создавать друг другу меньше взаимных помех.

Адаптивный выбор типа пакета

Тип передаваемого пакета Bluetooth также может влиять на характеристики совме­стимости. Пакеты Bluetooth несут различную полезную информацию, в зависимос­ти от количества слотов, отведенных под пакет.

Уменьшение длины пакета, например, до однослотового, уменьшит уязвимость пакета при интерференции, а это увеличит вероятность правильного приема.

Исследования показали, что использование более коротких пакетов Bluetooth может увеличить пропускную способность при наличии интерференции. Однако, с уменьшением длины пакетов, возрастает их количество, соответственно, возраста­ют затраты на обработку заголовков и время простоя между скачками частоты, ко­торое требуется синтезатору для переключения прием/передача. При слишком большом количестве пакетов наступит момент, когда уменьшение типа пакета не улучшает пропускную способность.

Для достижения совместимости 802.11b и Bluetooth, специальными научными группами, такими как исследовательская группа IEEE 802.15.2 и Bluetooth SIG, выдвигается много предложений, рекомендаций и проектов.

Адаптивная перестройка частоты

Из-за неограниченного доступа к ISM диапазону, устройства Bluetooth подверга­ются высокому уровню интерференции от других приборов, работающих в этом же Диапазоне, таких как микроволновые печи, беспроводные телефоны и т.д. Кроме того, источниками интерференции могут быть беспроводные локальные сети, рабо­тающие по стандарту 802.1 lb. Для борьбы с замираниями и интерференцией в тех­нологии Bluetooth используется метод скачкообразной перестройки частоты (Frequency Hopping — FH).


Как говорилось ранее, в этом методе псевдослучайным образом выбираются 79 доступных частотных каналов, шириной 1МГц. В снеци-

Экономичные режимы работы устройств Bluetooth
фикации Bluetooth 1.1 процесс выбора частоты происходит без учета помеховой обстановки. Адаптивная перестройка частоты (Adaptive Frequency Hopping — AFH) предполагает активное изменение алгоритма перестройки частоты с учетом анализа спектра, и таким образом, позволяет предотвращать интерференцию. Дан­ный метод будет предусмотрен в спецификации Bluetooth 1.2 как наиболее пер­спективный и простой для реализации.

На рис. 3.30 изображена схема работы устройства Bluetooth в ISM диапазоне.

Экономичные режимы работы устройств Bluetooth


Устройство Bluetooth меняет частоту 1600 раз в секунду, псевдослучайным об­разом выбирая для работы канал шириной 1 МГц. Выбор канала происходит неза­висимо от наличия других активных устройств, занимающих ISM диапазон. Если рассматривать работу устройства Bluetooth, то оно использует весь ISM диапазон, но в конкретный момент времени — лишь малую его часть. Это позволяет устрой­ству Bluetooth уменьшать эффект замирания, а так же интерференцию.

а со

Рис. 3.30. Использование спектра устройством Bluetooth. Расширение спектр скачкообразной перестройкой частоты (FHSS)

Экономичные режимы работы устройств Bluetooth


Рис. 3.31. Работа беспроводной LAN 802.1 lb. Расширение спектра с помощью прямой последовательности


На рис. 3.31 представлена схема работы беспроводной локальной сети 802.1 lb. Очевидно, что сети, работа которых изображена на рис. 3.30 и рис. 3.31, будут ча­стично перекрывать частоты и мешать работе друг друга, если они работают в не-

посредственной близости друг от друга. Так как сети 802.1 lb работают на фиксиро­ванной частоте, а сети Bluetooth использует скачкообразную перестройку частоты, очевидно, что есть смысл реализовывать схемы исключения занятых частотных ка­налов именно в сетях Bluetooth.

Требуется найти метод определения интерференции, который использовался бы устройствами Bluetooth для: изменения алгоритма перестройки частоты для избе­жания интерференции; оповещения других членов пикосети об изменении после­довательности перестройки частоты; периодической переоценки состояния кана­лов.



Адаптивная перестройка частоты, это способ уменьшения интерференции. AFH для Bluetooth может быть определена четырьмя основными методами:

•     Классификация канала — метод определения источника интерференции путем
проверки КАЖДОГО канала.

•     Управление связью — координация и распределение AFH-данных членам пи­
косети Bluetooth (производится с помощью специальных LMP-команд).

•     Модификация последовательности перестройки частоты — исключение воз­
действия источника интерференции с помощью выборочного уменьшения количе­
ства каналов, по которым производится перестройка частоты.

•   Поддержка канала — метод периодической переоценки каналов.
Классификация канала включает обнаружение сети, создающей интерференцию.

Для этого существуют различные методы, такие как RSSI-измерения, оценка коли­чества ошибочных пакетов и др. У каждого метода есть свои преимущества и недо­статки. Например, RSSI позволяет устройству пассивно оценивать каждый канал и проводить оценку за один тайм-слот, длиной 625 миллисекунд. Методы, требую­щие доставки пакета, позволяют оценить возможность посылать пакеты по линии связи point-to-point, однако, эти методы могут быть слишком медленны, их работа зависит от типа передаваемого пакета.

При оценке качества канала, каждый канал классифицируется как «хороший» (т.е. свободный), или «плохой» (т.е. занятый). В этом случае в пикосети использу­ется управление связью для координации и распределения данных о состоянии ка­налов. Несмотря на то, что оценка качества канала может производиться каждым устройством в сети, мастер-устройство работает как главный «распределитель» по­следней информации о состоянии каналов. Мастер-устройство выполняет это, по­сылая специальные команды протокола управления связью (LMP) устройствам, определяя, какие частоты были добавлены или исключены из списка доступных каналов. Таким образом, для того, чтобы устройства в пикосети использовали AFH, необходимо, чтобы мастер-устройство использовало AFH.



Как только набор свободных для использования каналов определен, каждое уст­ройство получает соответствующие данные и должно изменить последователь­ность перестройки частоты, для того чтобы избежать использования занятых кана­лов. Эта модификация должна быть синхронизирована (по времени и частоте) Между всеми устройствами, которые входят в пикосеть.

Экономичные режимы работы устройств Bluetooth
Когда пикосеть Bluetooth использует меньшее количество частотных каналов необходимо периодически проводить классификацию каналов, управление связьт и модификацию последовательности перестройки частоты (т.е. поддержку канала) Этот процесс должен происходить достаточно регулярно для того, чтобы отслежи­вать изменения в состоянии каналов. В том случае, если мобильное устройство окажется в непосредственной близости с пикосетью Bluetooth (либо если устрой­ство увеличит излучаемую мощность), оно будет создавать интерференцию. Регу­лярная поддержка канала должна быть сбалансирована со «спящим» и «маломощ­ным» режимами работы различных устройств, для координирования и синхрони­зации AFH-данных.

Ниже рассмотрен пример иллюстрирующий ситуацию, в которой пикосеть Bluetooth работает в непосредственной близости с системой 802.lib. В этом случае определяется качество канала и эта информация распространяется между всеми устройствами в пикосети. Ширина полосы частот, занимаемая системой 802.lib, будет составлять 22 МГц. При этом, как показано на рис.3.32, устройства Bluetooth не будут использовать занятую полосу частот.

Экономичные режимы работы устройств Bluetooth


Рис. 3.32. Сосуществование Bluetooth и одной системы 802.11b с использованием AFH

Экономичные режимы работы устройств Bluetooth



Рис. 3.33. Блок-схема AFH-выбора частоты


На рис. 3.32 изображен случай, когда с помощью метода AFH удается избежать использования выбранных «плохих» каналов. На рисунке 3.33 представлено дере­во решений для AFH-модуля Bluetooth.

Такой метод улучшает обратную совместимость с устройствами, не использую­щими AFH, но работающими в этой же пикосети.

Использование адаптивной перестройки частоты в технологии Bluetooth помо­гает справиться с перегрузками ISM диапазона, в котором работает все большее ко­личество устройств.


Метод AFH специально направлен на уменьшение интерфе­ренции от устройств, работающих на фиксированных частотах, таких как 802.11b, микроволновых печей и т.д. Исключение использования занятого спектра позволя­ет Bluetooth достигать большей пропускной способности и улучшать качество ус-

.,vr(QoS).

Преимущества AFH распространяются не только на Bluetooth системы. Систе­ма, работающая на частотах, которые не использует AFH-система Bluetooth, так­же будет иметь большую пропускную способность (например, 802.11b), или луч­шее качество передаваемого голоса (например, беспроводной телефон). Это на­зывается «принципом добрососедства», когда устройство Bluetooth, которое мо­жет создавать интерференцию другим устройствам, не использует занятые час­тотные каналы.

Адаптивная перестройка частоты делает возможным сосуществование Bluetooth-систем с другими системами, также использующими ISM диапазон, по­тому что каждая система избегает использования занятой части спектра. Из-за то­го, что уменьшится число конфликтов, уменьшатся задержки (времена ожидания), т.к. сократится количество повторных передач. Уменьшение количества повторных передач повлечет за собой уменьшение излучаемой мощности.

По мере того, как количество источников интерференции в пространстве увели­чивается, из AFH-последовательности перестройки частоты исключается все боль­шее количество каналов. Без использования AFH, характеристики Bluetooth-сис­темы будут постепенно ухудшаться. Применение AFH-системы имеют целью иметь устойчивую связь до момента работы минимального числа каналов. Если Bluetooth-система, работающая на минимальном количестве каналов (15 в соответ­ствии с FCC, или 20 в соответствии с ETSI), продолжает испытывать интерферен­цию, пропускная способность и надежность начнут уменьшаться из-за того, что должны использоваться заведомо «плохие» частотные каналы.

Чем больше количество частотных каналов, которые использует AFH-система, тем больше эта система создает интерференции.


Минимальное количество кана­лов, которое должна использовать FHSS- система обычно определяется органами государственного регулирования, которые контролируют использование частот­ного спектра. Федеральная комиссия по связи установила минимальное количе­ство каналов, равное 75, а в 2002 году был создан документ «Замечание к предпо­лагаемым правилам использования» (Notice of Proposed Rule-Making — NPRM), предлагающий уменьшение минимального количества каналов до 15. Предложе­ние NPRM актуально и вероятно не встретит возражений. Европейский институт стандартов по телекоммуникациям уже разрешает FHSS-системам уменьшать ко-личество частотных каналов до 20. В использовании разумных методов избежа-

ния коллизий, таких как адаптивная перестройка частоты, заинтересованы не только распорядительные органы, но и производители, а также конечные пользо­ватели.

По понятным причинам, предпочтительнее, чтобы в пикосети Bluetooth работа­ли устройства, поддерживающие AFH. Это вполне достижимо, т.к. мастер-устрой­ство всегда может определить, какие устройства поддерживают AFH, а какие нет. Таким образом, мастер-устройство может работать как в обычном режиме, так и в AFH-режиме.

Возможность AFH улучшать работу устройств Bluetooth при наличии интерфе­ренции, делает этот метод привлекательным. Возможность метода AFH улучшать работу различных устройств очень важна для компаний или пользователей, кото­рые используют РАЗЛИЧНЫЕ беспроводные сети в непосредственной близости друг от друга. Увеличение надежности, уменьшение задержек и возможность сосу­ществования с другими сетями делает метод AFH очень привлекательным для ис­пользования в системах Bluetooth [30].



Содержание раздела